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Abstract. Let Φ be a uniformly distributed random k-SAT formula with n variables and m clauses. Non-
rigorous statistical mechanics ideas have inspired a message passing algorithm called Belief propagation guided
decimation for finding satisfying assignments of Φ. This algorithm can be viewed as an attempt at implement-
ing a certain thought experiment that we call the decimation process. In this paper we identify a variety of phase
transitions in the decimation process and link these phase transitions to the performance of the algorithm.
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1 Introduction

Let k ≥ 3 and n > 1 be integers, let r > 0 be a real, and set m = drne. Let Φ = Φk(n,m) be a propositional
formula obtained by choosing a set ofm clauses of length k over the variables V = {x1, . . . , xn} uniformly at ran-
dom. For k, r fixed we say that Φ has some property P with high probability (‘w.h.p.’) if limn→∞ P [Φ ∈ P] = 1.
The interest in random k-SAT originates from the experimental observation that for certain densities r the random
formulaΦ is satisfiable w.h.p. while a large class of algorithms, including and particularly the workhorses of prac-
tical SAT solving such as sophisticated DPLL-based solvers, fail to find a satisfying assignment efficiently [18].
Over the past decade, a fundamentally new class of algorithms has been proposed on the basis of ideas from statis-
tical physics [6, 17]. Experiments performed for k = 3, 4, 5 indicate that these new ‘message passing algorithms’,
namely Belief Propagation guided decimation and Survey Propagation guided decimation (‘BP/SP decimation’),
excel on random k-SAT instances [14]. Indeed, the experiments indicate that BP/SP decimation find satisfying
assignments for r close to the threshold where Φ becomes unsatisfiable w.h.p.
These algorithms are specifically inspired by a generic technique from statistical mechanics called the cavity
method, which was used in [6, 15] to study the structure of the set S(Φ) of satisfying assignments (or, more ac-
curately, properties of the Gibbs measure) of the random formula Φ. The results obtained in these (non-rigorous)
works identify phase transitions solely in terms of the formula density r. Furthermore, in base to them, it was
hypothesized that (certain versions of) BP decimation should find satisfying assignments up to r ∼ 2k ln k

k or
even up to r ∼ 2k ln 2 [15]. The argument given for the latter scenario in [15] is that the key obstacle for BP is
the condensation phase, in which, the set of solutions is dominated by a few large cluster (with strongly fluctu-
ating sizes). In terms of the parameter r, the condensation threshold was (non-rigorously) estimated to occur at
r = 2k ln 2− 3

2 ln 2.
Since random k-SAT instances have widely been deemed extremely challenging benchmarks, the stellar experi-
mental performance of the physicists’ message passing algorithms has stirred considerable excitement. However,
the statistical mechanics ideas that BP/SP decimation are based on are highly non-rigorous, and thus a rigorous
analysis of these message passing algorithms is an important but challenging open problem.
A first step was made in [8], where it was shown that BP decimation does not outperform far simpler combinatorial
algorithms for sufficiently large clause lengths k. More precisely, the main result of [8] is that there is a constant
ρ0 > 0 (independent of k) such that the ‘vanilla’ version of BP decimation fails to find satisfying assignments
w.h.p. if r > ρ02k/k. The explanation for this discrepancy is that [6, 15] neglect the time parameter θ = 1− t/n
of the decimation process, an idealized thought experiment that the BP decimation algorithm aims to implement.
The analysis performed in [8] is based on an intricate method for directly tracking the execution of BP decima-
tion. Unfortunately this argument does little to illuminate the conceptual reasons for the algorithms’ demise. In
particular, [8] does not provide a link to the statistical mechanics ideas that inspired the algorithm.
The present paper aims to remedy these defects. Here we study the decimation process and show that this experi-
ment undergoes a variety of phase transitions that explain the failure of BP decimation for densities r > ρ0 ·2k/k.
Our results identify phase transitions jointly in terms of the clause/variable density r and with respect to the time
parameter of the decimation process θ. The latter dimension was ignored in the original statistical mechanics
work on BP [6, 17] but turns out to have a crucial impact on the performance of the algorithm. As Theorem 7
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shows, even for fixed ρ ≥ ρ0 (independent of k) condensation occurs as the decimation process proceeds to θ in
the regime (3). This means that decimating variables has a similar effect on the geometry of the set of satisfying
assignments as increasing the clause/variable density.
On a non-rigorous basis an analysis both in terms of the formula density r and the time parameter θ was carried out
in [20]. Thus, our results can be viewed as a rigorous version of [20] (with proofs based on completely different
techniques).
The results of this paper can also be seen as a generalization of the ones obtained in [1], where is rigorously proved
a substantial part of the results hypothesized in [15] on shattering and rigidity in terms of the clause/variable
density r; this improved prior work [2, 5, 9]. The new aspect here is that we identify not only a transition for
shattering/rigidity, but also for condensation and forcing in terms of both the density r and the time parameter θ of
the decimation process (Theorems 5–7). Technically, that is showed upon the methods developed in [1] and new
arguments needed to accommodate the time parameter θ to prove the statements on the marginals of the variables
and the condensation phenomenon (Theorem 7). In addition, Theorem 10 confirms rigorously that for r, θ in the
condensation phase, BP does not yield the correct marginals.
The present results have no immediate bearing on the conceptually more sophisticated SP decimation algorithm.
However, we conjecture that SP undergoes a similar sequence of phase transitions and that the algorithm will not
find satisfying assignments for densities ρ ≥ ρ0, with ρ0 a certain constant independent of k.

1.1 The decimation process

BP decimation is a polynomial-time algorithm that aims to (heuristically) implement the ‘thought experiment’
shown in Experiment 1 [19, 20], which we call the decimation process.1

Experiment 1 (‘decimation process’). Input: A satisfiable k-CNF Φ.
Result: A satisfying assignment σ : V → {0, 1} (with 0/1 representing ‘false’/‘true’).

0. Let Φ0 = Φ.
1. For t = 1, . . . , n do
2. Compute the fraction Mxt(Φt−1) of all satisfying assignments of Φt−1 in which the

variable xt takes the value 1.
3. Assign σ(xt) = 1 with probability Mxt(Φt−1), and let σ(xt) = 0 otherwise.
4. Obtain the formula Φt from Φt−1 by substituting the value σ(xt) for xt and simpli-

fying (i.e., delete all clauses that got satisfied by assigning xt, and omit xt from all
other clauses).

5. Return the assignment σ.

A moment’s reflection reveals that, given a satisfiable input formula Φ, the decimation process outputs a
uniform sample from the set of all satisfying assignments of Φ. The obvious obstacle to actually implementing
this experiment is the computation of the marginal probability Mxt(Φt−1) that xt takes the value ‘true’ in a
random satisfying assignment of Φt−1, a #P -hard problem in the worst case. Yet the key hypothesis underlying
BP decimation is that these marginals can be computed efficiently on random formulas by means of a message
passing algorithm. We will return to the discussion of BP decimation and its connection to Experiment 1 below.
In this work we are going to study the decimation process when applied to a random formula Φ for densities
r < 2k ln 2 − k [3, 4], i.e., in the regime where Φ is satisfiable w.h.p. More precisely, conditioning on Φ being
satisfiable, we let Φt be the (random) formula obtained after running the first t iterations of Experiment 1. The
variable set of this formula is Vt = {xt+1, . . . , xn}, and each clause of Φt consists of at most k literals. Let
S(Φt) ⊂ {0, 1}Vt be the set of all satisfying assignments of Φt and σt a ‘random’ satisfying assignment of Φt
obtained by the following experiment.

D1. Generate a random formula Φ, conditioned on Φ being satisfiable.
D2. Run the decimation process for t steps to obtain Φt.
D3. Choose a satisfying assignment σt ∈ S(Φt) uniformly at random.
D4. The result is the pair (Φt,σt).

1 Several different versions of BP decimation have been suggested. In this paper we refer to the simplest but arguably most
natural one, also considered in [8, 19, 20]. Other versions decimate the variables in a different order, allowing for slightly
better experimental results [6, 14].
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We will identify various phase transition that the formulas Φt undergo as t grows from 1 to n. As it turns out,
these can be characterized via two simple parameters. The first one is the clauses density r ∼ m/n. Actually, it
will be most convenient to work in terms of

ρ = kr/2k,

so thatm/n ∼ ρ·2k/k. We will be interested in the regime ρ0 ≤ ρ ≤ k ln 2, where ρ0 is a constant (independent of
k). The upper bound k ln 2 marks the point where satisfying assignments cease to exist [4]. The second parameter
is the fraction

θ = 1− t/n

of ‘free’ variables (i.e., variables not yet assigned by time t). We say that almost all σt ∈ S(Φt) have a certain
property A if |A ∩ S(Φt)| = (1− o(1))|S(Φt)|.

1.2 Notation and results

To formalize the concept of ‘typical’ satisfying assignment of Φt, we define the probability distribution Ut =
Ut(k, n,m) induced by the following experiment, which is equivalent to D1–D4:

U1. Generate a random formula Φ, conditioned on Φ being satisfiable.
U2. Choose σ ∈ S(Φ) uniformly at random.
U3. Substitute σ(xi) for xi for 1 ≤ i ≤ t and simplify to obtain a formula Φt.
U4. The result is the pair (Φt,σt), where σt : Vt → {0, 1} , x 7→ σ(x).

Definition 2. Let Φ be a k-CNF on V , Φt a the formula obtained after t steps of the decimation process, 1 ≤ t <
n, and suppose that σ ∈ S(Φt). Let dist(·, ·) denotes the Hamming distance.

1. We call x ∈ Vt loose in (Φt, σ) if there is τ ∈ S(Φt) such that

τ(x) 6= σ(x) and dist(σ, τ) ≤ lnn.

2. Given an integer ω ≥ 1, we say that x ∈ Vt is ω-rigid in (Φt, σ) if for any τ ∈ S(Φt) with τ(x) 6= σ(x) we
have

dist(σ, τ) ≥ ω.

3. Finally, x ∈ Vt is forced in (Φt, σ) if x occurs in a unit clauses of Φt.

Definition 3. We say that a set S ⊂ {0, 1}Vt is (α, β)-shattered if it admits a decomposition S =
⋃N
i=1Ri into

pairwise disjoint subsets such that the following two conditions are satisfied.

SH1. We have |Ri| ≤ exp(−αθn)|S| for all 1 ≤ i ≤ N .
SH2. If 1 ≤ i < j ≤ N and σ ∈ Ri, τ ∈ Rj , then dist(σ, τ) ≥ βθn.

Definition 4. Let α > 0. We say that a set S ⊂ {0, 1}θn is α-condensed if for any σ, τ ∈ S we have dist(σ, τ) ≤
αn.

Denote by Mx(Φt) the marginal probability that x takes the value ‘true’ in a random satisfying assignment of Φt,
for any x ∈ Vt, i.e.,

Mx(Φt) =
|{σ ∈ S(Φt) : σ(x) = 1}|

|S(Φt)|
.

The transition in terms of the density ρ is well described in [1, 2, 15]. Here we keep ρ < k ln 2, the values for
which a random formula has solution, and study the decimation process in terms of the time parameter θ. Figure 1
illustrate the changes of the set S(Φt) when ρ and θ grow. Let us explain them.
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Fig. 1. ρ, θ-Phase transition.

The symmetric phase. In the early stages of the de-
cimation process, while θ is ‘big’ (1), the correlations
amongst the variables are mostly local. Thus, if we
‘flip’ one variable in σ, then we can ‘repair’ the un-
satisfied clauses that this may cause by simply flipping
another lnn variables. Finally, as the average distance
between satisfying assignments is large on average,
the set S(Φt) is ‘well spread’ over the Hamming cube
{0, 1}Vt .
Shattering and rigidity. For θ in the regime (2), in
most satisfying σ ∈ S(Φt) the values assigned to
99% of the variables are linked via long-range corre-
lations, i.e., to ‘repair’ the damage done by flipping a
single rigid variable it is inevitable to reassign a cons-
tant fraction of all variables. The set S(Φt) decom-
poses into exponentially many exponentially tiny sub-
sets, which are mutually separated by a linear Ham-
ming distance Ω(n), and remains ‘well spread’ over
the Hamming cube {0, 1}Vt .
The condensation phase. As the decimation process
progresses to a point that θ satisfies (3), the set S(Φt)

shrinks into a condensed subset of {0, 1}Vt of tiny diameter, in contrast to a well-spread shattered set as in Theo-
rem 6. Furthermore, most marginals Mx(Φt) are either extremely close to 0 or extremely close to 1. In fact, there
is a large set R of variables on which all satisfying assignments virtually agree (more precisely: any two can’t
disagree on more than k2−kn variables in R).
The forced phase. In the last stages of the decimation process, while θ is in (4), most of the variables are force,
i.e., almost all clauses still unsatisfied are unit. Moreover, as the set S(Φt) is still condense, the geometry of the
space of solutions is a disconnected subset of tiny diameter.
Now, we formulate these results in Theorems-5- 8.

Theorem 5. There are constants k0, ρ0 > 0 such that for k ≥ k0, ρ0 ≤ ρ ≤ k ln 2− 2 ln k, and

k · θ > exp

[
ρ

(
1 +

ln(ln ρ+ 10)

ρ

)]
(1)

the random formula Φt has the following properties w.h.p.

1. In almost all satisfying assignments σ ∈ S(Φt) at least 0.99θn variables are loose.
2. At least θn/3 variables x ∈ Vt satisfy Mx(Φt) ∈ [0.01, 0.99].
3. W.h.p. almost all the satisfying assignments in S(Φt) are such that the distance between each two of them is

at least 0.49θn, i.e.,

|τ ∈ S(Φt) : dist(τ, σ) > 0.49θn| > (1− exp(Ω(n)))|S(Φt)|.

Theorem 6. There are constants k0, ρ0 > 0 such that for k ≥ k0, ρ0 ≤ ρ ≤ k ln 2− 2 ln k, and

ρ

ln 2
(1 + 2ρ−2) ≤ kθ ≤ exp

[
ρ

(
1− ln ρ

ρ
− 2

ρ

)]
(2)

the random formula Φt has the following properties w.h.p.

1. In almost all σ ∈ S(Φt) at least 0.99θn variables are Ω(n)-rigid.
2. There exist α = α(k, ρ) > 0, β = β(k, ρ) > 0 such that S(Φt) is (α, β)-shattered.
3. At least θn/3 variables x ∈ Vt satisfy Mx(Φt) ∈ [0.01, 0.99].
4. W.h.p. almost all the satisfying assignments in S(Φt) are such that the distance between each two of them is

at least 0.49θn, i.e.,

|τ ∈ S(Φt) : dist(τ, σ) > 0.49θn| > (1− exp(Ω(n)))|S(Φt)|.
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Theorem 7. There are constants k0, ρ0 > 0 such that for k ≥ k0, ρ0 ≤ ρ ≤ k ln 2− 2 ln k, and

ln ρ < k · θ < (1− ρ−2) · ρ/ (ln 2) (3)

the random formula Φt has the following properties w.h.p.

1. In almost all σ ∈ S(Φt) at least 0.99θn variables are Ω(n)-rigid.
2. The set S(Φt) is exp(2− ρ)/k-condensed.
3. At least 0.99θn variables x ∈ Vt satisfy Mx(Φt) ∈

[
0, 2−k/2

]
∪
[
1− 2−k/2, 1

]
.

4. There is a set R ⊂ Vt of size |R| ≥ 0.99θn such that for any σ, τ ∈ S(Φt) we have

|{x ∈ R : σ(x) 6= τ(x)}| ≤ k2−kn.

Theorem 8. There are constants k0, ρ0 > 0 such that for k ≥ k0, ρ0 ≤ ρ ≤ k ln 2− 2 ln k, and

ln(n)/n� k · θ < ln(ρ)(1− 10/ ln ρ) (4)

the random formula Φt has the following properties w.h.p.

1. At least 0.99θn variables are forced.
2. The set S(Φt) is exp(2− ρ)/k-condensed.

Belief Propagation. As mentioned earlier, the BP decimation algorithm is an attempt at implementing the deci-
mation process by means of an efficient algorithm. The key issue with this is the computation of the marginals
Mxt(Φt−1) in step 2 of the decimation process. Indeed, the problem of computing these marginals is #P -hard
in the worst case. Thus, instead of working with the ‘true’ marginals, BP decimation uses certain numbers
µxt(Φt−1, ω) that can be computed efficiently, where ω ≥ 1 is an integer parameter. The precise definition of
the µxt(Φt−1, ω) can be found in [6]. Basically, they are the result of a ‘local’ dynamic programming algorithm
(‘Belief Propagation’) that depends upon the assumption of a certain correlation decay property. For given k, ρ,
the key hypothesis underpinning the BP decimation algorithm is

Hypothesis 9. For any ε > 0 there is ω = ω(ε, k, ρ, n) ≥ 1 such that w.h.p. for all 1 ≤ t ≤ n we have
|µxt(Φt−1, ω)−Mxt(Φt−1)| < ε.

The Hypothesis 9 states that throughout the decimation process, the ‘BP marginals’ µxt(Φt−1, ω) are a good
approximation to the true marginals Mxt(Φt−1).
As we mentioned before, in [8] was proved that BP decimation fails to find satisfying assignments w.h.p. if
r > ρ02k/k, for some ρ0 > 0. However, this result does not show why that happen. The next result shows
rigorously that in terms of ρ, θ, in the θ-condensation phase BP decimation does not yield the correct marginals.
This result explain how the decimation process itself affect for the algorithm’s demise.

Theorem 10. There exist constants c0, k0, ρ0 > 0 such that for all k ≥ k0, and ρ0 ≤ ρ ≤ k ln 2 − 2 ln k the
following is true for any integer ω = ω(k, ρ, n) ≥ 1. Suppose that

c0 ln(ρ) < k · θ < ρ/ ln 2. (5)

Then for at least 0.99θn variables x ∈ Vt we have µx(Φt, ω) ∈ [0.49, 0.51] .

Comparing Theorem 7 with Theorem 10, we see that w.h.p. for θ satisfying (5) most of the ‘true’ marginals
Mx(Φt) are very close to either 0 or 1, whereas the ‘BP marginals’ lie in [0.49, 0.51]. Thus, in the regime described
by (5) the BP marginals do not provide a good approximation to the actual marginals.

Corollary 11. There exist constants c0, k0, ρ0 > 0 such that for all k ≥ k0, ρ0 ≤ ρ ≤ k ln 2−3 ln k Hypothesis 9
is untrue.
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2 Summary and discussion.

Fix k ≥ k0 and ρ ≥ ρ0. Theorems 5–8 show how the space of satisfying assignments of Φt evolves as the
decimation process progresses. In the symmetric phase kθ ≥ exp((1+oρ(1))ρ) where there still is a large number
of free variables, the correlations amongst the free variables are purely local (‘loose variables’). As the number
of free variables enters the regime (1 + oρ(1))ρ/ ln 2 ≤ kθ ≤ exp((1 − oρ(1))ρ), the set S(Φt) of satisfying
assignments shatters into exponentially many tiny ‘clusters’, each of which comprises only an exponentially small
fraction of all satisfying assignments. Most satisfying assignments exhibit long-range correlations amongst the
possible values that can be assigned to the individual variables (‘rigid variables’). This phenomenon goes by the
name of dynamic replica symmetry breaking in statistical mechanics [15].
While in the previous phases the set of satisfying assignments is scattered all over the Hamming cube (as witnessed
by the average Hamming distance of two satisfying assignments), in the condensation phase (1 − oρ(1)) ln ρ ≤
kθ ≤ (1 − oρ(1))ρ/ ln 2 the set of satisfying assignments has a tiny diameter. This is mirrored by the fact that
the marginals of most variables are extremely close to either 0 or 1. Furthermore, in (most of) this phase the
estimates of the marginals resulting from Belief Propagation are off (Theorem 10). As part 4 of Theorem 7 shows,
the mistaken estimates of the Belief Propagation computation would make it impossible for BP decimation to
penetrate the condensation phase. More precisely, even if BP decimation would emulate the decimation process
perfectly up until the condensation phase commences, with probability 1 − exp(−Ω(n)) BP decimation would
then assign at least k2−kn variables in the set R from part 4 of Theorem 7 ‘wrongly’ (i.e., differently than they
are assigned in any satisfying assignment). In effect, BP decimation would fail to find a satisfying assignment,
regardless of its subsequent decisions. Finally, in the forced phase kθ ≤ (1− oρ(1)) ln ρ there is an abundance of
unit clauses that make it easy to read off the values of most variables. However, getting stuck in the condensation
phase, BP decimation won’t reach this regime.
These results suggest that the reason for the failure of BP decimation is the existence of the condensation phase.
Intuitively, in the condensation phase the marginals are governed by genuinely global phenomena (essentially
expansion properties) that elude the inherently local BP computation. By contrast, it is conceivable that BP does
indeed yield the correct marginals in the previous phases. Verifying or falsifying this remains an important open
problem.

3 Preliminares

3.1 Analyzing the decimation process

We perform some groundwork to facilitate a rigorous analysis of the decimation process. An analysis of U1–U4
seems difficult because of U2: it is unclear how to analyze (or implement) this step directly. Following [1], we will
surmount this problem by considering yet another experiment.

P1. Choose an assignment σ′ ∈ {0, 1}V uniformly at random.
P2. Choose a formula Φ′ with m clauses that is satisfied by σ′ uniformly at random.
P3. Substitute σ′(xi) for xi for 1 ≤ i ≤ t and simplify to obtain a formula Φ′t.
P4. The result is the pair (Φ′t,σ

′
t), where σ′t : Vt → {0, 1} , x 7→ σ′(x).

The experiment P1–P4 is easy to implement and, in effect, also amenable to a rigorous analysis. For given the
assignment σ′, there are (2k−1)

(
n
k

)
clauses in total that evaluate to ‘true’ under σ′, and to generateΦ′ we merely

choose m out of these uniformly and independently. Unfortunately, it is not true that the experiment P1–P4 is
equivalent to U1–U4. However, we will employ a result from [1] that establishes a connection between these two
experiments that is strong enough to extend many results from P1–P4 to U1–U4.
To state this result, observe that P1–P4 and U1–U4 essentially only differ in their first two steps. Thus, let
Λk(n,m) denote the set of all pairs (Φ, σ), where Φ is a k-CNF on V = {x1, . . . , xn} with m clauses, and
σ ∈ S(Φ). Let Uk(n,m) denote the probability distribution induced on Λk(n,m) by U1–U2, and let Pk(n,m)
signify the probability distribution induced by P1–P2; this distribution is sometimes called the planted model.
The key point to connect P1–P2 with U1–U2 is the following: if the number of satisfying assignment of a random
formula, i.e., |S(Φ)| is by an exponential factor smaller that the expectation, then, these estimates allows us to
approximate the uniform model by the planted model. This result is obtained in [1](Lemma 22, Theorem 8) and
given subsequently.

Theorem 12 ([1]). Let (Φ, σ) be a pair chosen from the experiment U1–U2. Suppose k ≥ 4 and 0 < ρ <
k ln 2− k2/2k, then w.h.p.
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1

n
ln |S(Φ)| ≥ ln 2 + r ln(1− 2−k)− 0.99ρn

2k
. (6)

Theorem 13 ([1]). Suppose k ≥ 4, 0 < ρ < k ln 2 − k2/2k and |S(Φ)| satisfies (6). Let E ⊂ Λk(n,m). If
PPk(n,m) [E ] ≥ 1− exp(−ρn/2k) then PUk(n,m) [E ] = 1− o(1).

To establish Theorems 5-8 we need to connect P1–P4 with U1–U4. This result is obtained just using the following
consequence of Theorem 12 and following the proof of Theorem 13. The proof of Theorem 13 is given in [1].

Corollary 14. Let (Φt, σt) be a pair chosen from the experiment U1–U4, with 1 ≤ t ≤ n, then w.h.p.

1

n
ln |S(Φt)| ≥ (1− t/n) ln 2 + r ln(1− 2−k)− ρn

2k
. (7)

Proof. Let Φ be a formula such that 1
n ln |S(Φ)| ≥ ln 2 + r ln(1 − 2−k) − ρn/2k. By Theorem 12 the random

formula Φ has this property w.h.p. Thus, it suffices to show that for a random σ ∈ S(Φ) the bound (7) holds w.h.p.
To this end, let I = {0, 1}t. Moreover, for each σ ∈ {0, 1}n let σ|t be the vector (σ(x1), . . . , σ(xt)) ∈ I. For
each σ∗ ∈ I let Z(σ∗) be the number of assignments σ ∈ S(Φ) such that σ|t = σ∗. If σ ∈ S(Φ) is chosen
uniformly at random, then for any σ∗ ∈ I we have

P [σ|t = σ∗] = Z(σ∗)/Z, where Z =
∑
τ∈I

Z(τ) = |S(Φ)| .

Let ξ > 0 be a sufficiently small number and let

q = P [Z(σ|t) < exp(−t ln 2− ξn) · Z] ,

where σ ∈ S(Φ) is chosen uniformly at random. Then

q ≤
∑

σ∗∈I:Z(σ∗)≤ Z
exp(ξn+t ln 2)

Z(σ∗)/Z ≤
2t

Z
· Z

exp(ξn+ t ln 2)
≤ exp(−ξn),

whence the assertion follows. ut

We also need the following variant of the planted model.

P1’. Choose an assignment σ′ ∈ {0, 1}V uniformly at random.
P2’. Choose a formula Φ′ by including each of the (2k − 1)

(
n
k

)
possible clauses that are satisfied under σ′ with

probability p = m/((2k − 1)
(
n
k

)
) independently.

P3’. Substitute σ′(xi) for xi for 1 ≤ i ≤ t and simplify to obtain a formula Φ′t.
P4’. The result is the pair (Φ′t,σ

′
t), where σ′t : Vt → {0, 1} , x 7→ σ′(x).

Steps P1’–P2’ of this experiment induce a probability distribution P ′k(n,m) on formula/assignment pairs. The
following corollary establishes a connection between this distribution and the distribution Uk(n,m).

Corollary 15 ([1]). Suppose k ≥ 4 and 0 < ρ < k ln 2 − k2/2k. Let E be any property of formula/assignment
pairs. If PP′k(n,m) [E ] ≥ 1− exp(−ρn/2k) then PUk(n,m) [E ] = 1− o(1).

Its proof only use that under P ′k(n,m), the total number of clauses equals m is Θ(m−1/2). Furthermore, the
conditional distribution P ′k(n,m) given the total number of clauses is m, is identical to Pk(n,m). Therefore,
the assertion follows from Theorem 12 and 13. The same result is obtained to connect P1’–P4’ with U1–U4, the
assertion follows from Theorem 13 and Corollary 14.
We will need the following elementary observation about the distribution P ′k (n,m).

Lemma 16. Let (Φ, σ) be a pair chosen from the distribution P ′k (n,m).

1. For each literal l that is true under σ, the number of clauses supported by l, Sl, is binomially distributed
Bin( kn ·

(
n
k

)
,m/((2k − 1)

(
n
k

)
)) with mean µ = kr

2k−1 .
2. For any integer D, the number of true literals l under σ that support fewer than D clauses, NLD, is also

binomially distributed Bin(n, q), where q = P (Sl < D).
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Proof. Without loss of generality we may condition on σ assigning the value true to all variables. Thus, for
any true literal l under σ, the number of all possible clauses in which l is the only positive literal is equal to(
n−1
k−1
)

= k
n ·
(
n
k

)
. As each of the clauses is included in Φ with probability p = m/((2k − 1)

(
n
k

)
) independently,

then Sl has a binomial distribution Bin( kn ·
(
n
k

)
, p). This establishes 1.

Now define the variable

Yl =

{
1 if the number of clauses supported by l is fewer than D
0 otherwise,

which has Bernoulli distribution, Ber(q). As the number of true literals under σ are n, then NLD =
∑n
l=1 Yl and

is distributed Bin(n, q). ut

3.2 Factor graph and tame variables

There is a natural way to associate a bipartite graph with a k-CNF Φ, known as the factor graph. Its vertices are
the variables and the clauses of Φ, and each clause is adjacent to all the variables it contains. For a variable x we
let N2ω(x) be the subgraph of that is spanned by all vertices at distance at most 2ω from x. (where, of course,
‘distance’ just refers to the length of a shortest path in the factor graph). A variable x is tame if N2ω(x) is acyclic
and contains no more than ln(n) variables. To prove the item concern to loose variables (Theorem 5, part 1), we
need the following well-known fact about random k-CNFs.

Proposition 17. Suppose that k ≥ 3 and 0 < r ≤ 2k ln 2− k. W.h.p. all but o(n) variables are tame in Φ.

Proof. Assume that k ≥ 3, 0 < r ≤ 2k ln(k)/k and ω = dln ln lnne. Proposition 17 follows from the next two
lemmas directly. ut

Lemma 18. W.h.p. for all but o(n) variables the subgraph N2ω(x) of the factor graph contains at most ln(n)
variables.

Proof. Fix a variable x and let Lj be the set of variables that have distance 2j from x in the factor graph. We are
going to prove that P[

∑ω
j=0 |Lj | ≥ lnn] = o(1). Then the assertion follows from Markov’s inequality. Let Fj be

the coarsest σ-algebra in which all events {v ∈ Li} with v ∈ V and 0 ≤ i ≤ j are measurable. For each x ∈ Lj+1

there is a clause C that contains both x and a variable from Lj but no variable from Li for i < j. Let Yj+1

be the number of such clauses. We claim that conditional on Fj the variable Yj+1 is stochastically dominated
by a binomial variable Bin(m, k |Lj | /(n −

∑
i<j |Li|)). For the probability that a random clause conditional

on not containing a variable from
⋃
i<j Li contains a variable from Lj is bounded by k |Lj | /(n −

∑
i<j |Li|)

(as the probability that any of the k slots contains a variable from Lj is |Lj | /(n −
∑
i<j |Li|). Furthermore,

|Lj+1| ≤ (k−1)Yj+1. Therefore, |Lj+1| given Fj is stochastically dominated by a scalar multiple Zj = (k−1) ·
Bin(m, k |Lj | /(n −

∑
i<j |Li|)) of a binomial random variable. If

∑ω
j=0 |Lj | ≥ lnn, then there is 0 ≤ j < ω

such that |Lj+1|/|Lj | ≥ (lnn)1/2ω . Moreover, if j0 is an index such that
∑
i<j0
|Li| ≤ lnn, then by Markov’s

inequality

P
[
|Lj0+1|/|Lj0 | ≥ (lnn)1/ω|Fj0

]
≤ P

[
Zj0+1 ≥ |Lj0 | · (lnn)1/2ω

]
≤ EZj0+1

|Lj0 | · (lnn)1/2ω
≤ k(k − 1)m

n−
∑
i<j0
|Li|
· (lnn)−1/2ω

≤ k(k − 1)m

(n− lnn)
· (lnn)−1/2ω ≤ 2k2r · (lnn)−1/2ω.

Applying the union bound over indices j0, we conclude that

P

 ω∑
j=0

|Lj | ≥ lnn

 ≤ 2k2r · (lnn)−1/2ω · ω = o(1),

thereby completing the proof. ut

Lemma 19. W.h.p. the subgraph N2ω(x) of the factor graph of Φ is acyclic if the number of variables in N2ω(x)
is at most lnn.
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Proof. Observe that any cycle of length 2l corresponds to a sequence C1, . . . , Cl of clauses such that for all index
pairs j1, j2 such that either 1 ≤ j1 < l and j2 = j1 + 1 or j1 = 1 and j2 = l the clauses Cj1 and Cj2 share a
variable.
For each xi ∈ N2ω(x), let Xi

l be the number of cycles of length 2l such that, the clauses C1 and Cl share the
variable xi, then the number of cycles in N2ω(x) is given by Y =

∑
1≤l≤ω

∑
i∈N2ω(x)

Xi
l and we have

{Y ≥ 1} ⊆ {
∑

1≤l≤ω

∑
i∈N2ω(x)

Xi
l ≥ |N2ω(x)|}.

On the other hand, the probability that two independent random clauses C,C ′ share a variable is bounded by k2/n
(as there are k ways to choose a variable in C and k slots where this variable can appear in C ′, and because the
probability that a given variable appears in any particular slot of C ′ is 1/n). Let Xl be the number of cycles of
length 2l, i.e.,

∑
i∈N2ω(x)

Xi
l , Therefore, EXl ≤

(
mk2/n

)l
= (k2r)l. In effect, the expected number of cycles of

length at most 2ω is bounded by
E
∑

1≤l≤ω

Xl ≤
∑

1≤l≤ω

(k2r)l = o(lnn).

Thus, by Markov’s inequality P (Y = 0) ≥ 1− o(1) if |N2ω(x)| < lnn. ut

Finally, to complete some of the following proofs, we use Chernoff bound on the tails of a binomially distributed
random variable X with mean λ (see [12, pages 26–28]): For any t > 0

P(X ≥ λ+ t) ≤ exp (−t · ϕ(t/λ)) and P(X ≤ λ− t) ≤ exp (−t · ϕ(−t/λ)) , (8)

where
ϕ(x) = (1 + x) ln(1 + x)− x. (9)

4 Overview

We describe the main results of this paper, i.e., Theorems 5–8, according to the various phases that the decimation
process passes through. But to prove this results, it is necessary to proceed in a different order. To facilitate this, we
will state the main results in the order in which the proofs proceed. We begin with the statements on the loose/rigid
and forced variables. Recall that Vt = {xt+1, . . . , xn} and let Lt = {xt+1, x̄t+1, . . . , xn, x̄n} be the set of literals.

Theorem 20. There exist constants k0, ρ0 > 0 such that for all k ≥ k0 and ρ0 ≤ ρ ≤ k ln 2−2 ln k the following
three statements hold for a random pair (Φt, σt) chosen from the experiment U1–U4 w.h.p.

1. If kθ > exp
[
ρ
(

1 + ln ln ρ
ρ + 10

ρ

)]
, then at least 0.99θn variables x ∈ Vt are loose w.h.p.

2. If 1 < kθ < exp
[
ρ
(

1− 3 ln ρ
ρ

)]
, then at least ρ3 exp(−ρ)θn variables x ∈ Vt are Ω(n)-rigid w.h.p.

3. If ln(n)/n < θ < (ln(ρ)− 10)/k, then at least 0.99θn variables are forced w.h.p.

The second type of statements concern the global structure of the set of satisfying assignments, summarize in
the following theorem.

Theorem 21. There exist constants k0, ρ0 > 0 such that for all k ≥ k0, and ρ0 ≤ ρ ≤ k ln 2−2 ln k the following
three statements hold.

1. If
ρ

ln 2
(1 + ρ−2 + 22−k) ≤ kθ ≤ exp

[
ρ

(
1− ln ρ

ρ
− 2

ρ

)]
then S(Φt) is (exp(2− ρ)− ε, exp(2− ρ) + ε)-shattered w.h.p. for some ε = ε(k, ρ) > 0.

2. If θ < (ρ− 1/ρ)/ (k ln 2), then S(Φt) is exp(2− ρ)-condensed w.h.p.
3. If θ > ρ(1 + 2/ρ2)/(k ln 2), then, for almost all the satisfying assignments in S(Φt), the distance between

two random elements is at least 0.49θn w.h.p.

The next theorem contains the statements about the marginals of the truth values of individual variables.
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Theorem 22. There exist constants k0, ρ0 > 0 such that for all k ≥ k0, and ρ0 ≤ ρ ≤ k ln 2−2 ln k the following
two statements hold.

1. If θ ≥ ρ
k ln 2 (1 + 1/ρ2 + k/2k−2), then w.h.p. for at least θn/3 variables x ∈ Vt we have

Mx(Φt) ∈ [0.01, 0.99] .

2. If ln(n)/n < θ < ρ(1− 1/ρ2)/(k ln 2), then w.h.p. for all but exp(−ρ)θn variables x ∈ Vt we have

Mx(Φt) ∈
[
0, 2−k/2

]
∪
[
1− 2−k/2, 1

]
.

Theorems 5–8 follow directly from Theorems 20–22 by reordering the individual statements according to the
phases they appear in.
The statements about loose, rigid and force variables are build upon the techniques developed in [1]. For the type
of statement on the global structure of the set of satisfying assignments, shattering and condensation, we adapt
arguments from [1, 2, 9] to the situation where we have the two parameters θ, ρ (rather than just ρ). Finally, the
statements about the marginals of the truth values of individual variables will be proved using the bounds for the
distance of two satisfying assignments, in combination with a double-counting argument.

5 Proof of Theorem 20

5.1 Loose variables

Let σ be a satisfying assignment of a k-CNF Φ. Remember that a literal l supports a clause C of Φ if l is the only
literal in C that is true under σ. Moreover, we say that a literal l is 1-loose if it is true under σ and supports no
clause. In addition, l is 2-loose if l is true under σ and each clause that l supports contains a 1-loose literal from
Lt. Thus, any 1-loose literal is 2-loose as well. We also need to establish the following.

Proposition 23. Suppose that θ ≥ 3 exp(ρ)(ln ρ + 10)/k and r ≤ 2k ln 2 − k. Let (Φt, σt) be a random pair
chosen from the experiment U1–U4. Then there are at least 0.999θn 2-loose literals in Lt w.h.p.

To prove Proposition 23, we start by estimating the number of 1-loose variables.

Lemma 24. Suppose that θ ≥ exp(ρ)/k and ρ ≤ k ln 2. Let (Φt, σt) be a random pair chosen from the experiment
P1’–P4’. With probability at least 1− exp(−k22−kn) the number of 1-loose in Lt is at least θn · exp(−ρ)/2.

Proof. By Lemma 16 the number X of 1-loose literals in Lt has a binomial distribution with mean

EX ≤ θn · P

[
Bin

(
k

n
·
(
n

k

)
,

m

(2k − 1)
(
n
k

)) = 0

]

= θn ·

(
1− m

(2k − 1)
(
n
k

)) k
n ·(

n
k)

∼ θn · exp

(
− kr

2k − 1

)
= θn exp(−ρ− ρ/(2k − 1)).

As θ ≥ exp(ρ)/k and ρ ≤ k ln 2, the Chernoff bound (8) shows that for large enough k

P [X < θn exp(−ρ)/2] ≤ exp

[
− θn

8 exp(ρ)

]
≤ exp(−k22−kn),

as desired. ut

Lemma 25. Suppose that θ ≥ 3 exp(ρ)(ln ρ + 10)/k, ρ ≥ ρ0 with ρ0 as in Lemma 24, and that k is sufficiently
large. Let (Φt, σt) be a random pair chosen from the experiment P1’–P4’. Then with probability at least 1 −
exp(−k21−kn) the number of 2-loose literals in Lt is at least 0.999θn.
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Proof. To simplify the notation, we are going to condition on σ being the all-true assignment; this is without
loss of generality. For each variable x ∈ Vt we let Sx be the number of clauses supported by x. Moreover, let
S =

∑
x∈Vt Sx and let X be the number of variables x ∈ Vt such that Sx = 0. Thus, X equals the number of

1-loose variables. Let E be the event thatX ≥ θn exp(−ρ)/2 and S ≤ 2ρθn. Since the number of possible clauses
with precisely one positive literal in Lt is θn

(
n−1
k−1
)
, S has a binomial distribution Bin[θn

(
n−1
k−1
)
,m/((2k−1)

(
n
k

)
)].

Therefore, Lemma 24 implies that

P [¬E ] ≤ P [X < θn exp(−ρ)/2] + P [S > 2ρθn]

≤ exp
[
−k22−kn

]
+ P

[
Bin

(
θn

(
n− 1

k − 1

)
,

m

(2k − 1)
(
n
k

)) > 2ρθn

]
. (10)

We have

θn

(
n− 1

k − 1

)
· m

(2k − 1)
(
n
k

) ≤ 2k

2k − 1
· ρθn.

Hence, combining (10) with the Chernoff bound (8), we obtain for sufficiently large k

P [¬E ] ≤ exp
[
−k22−kn

]
+ exp [−0.99ρθn] ≤ 2 exp

[
−k22−kn

]
, (11)

where in the last step we used the assumption that ρ ≥ ρ0 for a fixed constant ρ0 > 0. Let us now condition
on the event that S = s for some number s ≤ 2ρθn, and on the event E . In this conditional distribution for
each of the s clauses supported by some variable in Vt the k − 1 negative literals that the clause contains are
independently uniformly distributed. Therefore, for each such clause the number of negative literals ȳ whose
underlying variable y is 1-loose is binomially distributed Bin(k−1, X/n). Consequently, the number T of clauses
supported by some variable in Vt in which no 1-loose variable occurs negatively has a binomial distribution with
mean s · P [Bin(k − 1, X/n) = 0]. Hence,

E [T |E ] ≤ 2ρθn · P [Bin(k − 1, θ exp(−ρ)/2) = 0]

= 2ρθn · (1− θ exp(−ρ)/2)k−1 ≤ 2ρθn exp(−θ exp(−ρ)k/3) ≤ 2 exp(−10)θn.

Thus, the Chernoff bound (8) implies that for k ≥ k0 large enough

P [T > 0.001θn|E ] ≤ exp(−0.001θn) ≤ exp
[
−k22−kn

]
. (12)

Finally, the assertion follows from (11) and (12). ut
Proof (Proposition 23). Let E be the event that a pair (Φt, σt) chosen from the experiment U1–U4 has at least
0.999θn 2-loose literals. Lemma 25 shows that

PP′k(n,m) [E ] ≥ 1− exp(−k21−kn) ≥ 1− exp(−krn/4k). (13)

Moreover, Corollary 15 and (13) imply that PUk(n,m) [E ] = 1− o(1) as desired. ut
Proof (Theorem 20, part 1). Let (Φt, σt) be a pair chosen from the experiment U1–U4. Without loss of generality
we may condition on σ being the all-true assignment. Let L be the set of all tame variables that are 2-loose. By
Propositions 17 and 23 we have L ≥ (0.999 − o(1))θn ≥ 0.99θn w.h.p. Assuming that this is the case, we are
going to show that if x ∈ L, then there is a satisfying assignment τ such that τ(x) 6= σ(x) and dist(τ, σ) ≤ ln(n).
Thus, fix a variable x ∈ L. If x is 1-loose, then we can just set τ(x) = 1 − σ(x) = 0 and τ(y) = σ(y) = 1 for
all y 6= x to obtain a satisfying assignment with dist(τ, σ) = 1, because x does not support any clauses. Hence,
assume that x is 2-loose but not 1-loose. Let C be the set of all clauses supported by x in (Φt, σt). By definition
of 2-loose any clause C ∈ C contains a negative occurrence of a 1-loose variable xC ∈ Vt. Define τ(x) = 0,
τ(xC) = 0 for all C ∈ C, and τ(y) = σ(y) = 1 for all other variables y.
We claim that τ is a satisfying assignment. To see this, assume for contradiction that there is a clause U that is
unsatisfied under τ . Then U contains a variable from {x}∪{xC : C ∈ C} positively, while none of these variables
occurs negatively in U . Hence, U 6∈ C. Moreover, since the variables xC , C ∈ C, do not support any clauses, U
indeed contains two variables from the set {x} ∪ {xC : C ∈ C} positively. There are two possible cases.

Case 1: x occurs in U . Let C ∈ C such that xC occurs in U as well. Then the factor graph contains the cycle
x,C, xC , U, x, in contradiction to our assumption that x is tame.

Case 2: x does not occur in U . There exist C1, C2 ∈ C such that xC1
, xC2

occur in C. Hence, the factor graph
contains the cycle x,C1, xC1

, C, xC2
, C2, x, once more in contradiction to the assumption that x is tame.

Hence, there is no clause U that is unsatisfied under τ . Finally, since all the variable xC with C ∈ C have distance
two from x in the factor graph, and as x is tame, we have dist(σ, τ) ≤ lnn. ut
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5.2 Rigid variables

Assume that k, ρ, θ satisfy the assumptions of Theorem 6. Let (Φt, σt) be the (random) outcome of U1–U4. Our
goal is to show that w.h.p. most variables x ∈ Vt are rigid. What is the basic obstacle that makes it difficult to
‘flip’ the value of x? Observe that we can simply assign x the opposite value 1−σt(x), unless Φt has a clause C in
which either x or x̄ is the only literal that is true under σt. If there is such a clause, we say that x supports C. But
even if x supports a clause C it might be easy to flip. For instance, if C features some variable y 6= x that does not
support a clause, then we could just flip both x, y simultaneously. Thus, to establish the existence of Ω(n)-rigid
variables we need to analyze the distribution of the number of clauses that a variable supports, the probability that
these clauses only consists of variables that support further clauses, the probability that the same is true of those
clauses, etc, i.e., we will need to establish the existence of a special set of literals defined as follow.
In a random pair (Φt, σt) chosen from the experiment U1–U4, we say that a set S ⊂ Lt of true literals under σ is
a t-self-contained if each literal l ∈ S supports at least two clauses that contain literals from S̄ only, where S̄ is
the set of all negations of literals in S. These set muss be build with special attention by a recursive procedure and
using the following result.

Proposition 26. Suppose that k ≥ 6 and 0 < r ≤ 2k ln 2 − k. Let µ = ρ · 2k/(2k − 1) and ζ = (1 + µ +
µ2/2)/ exp(µ), and assume that 2kθζϕ(1) > ρ. Then w.h.p. in a random pair (Φt, σt) chosen from the experiment
U1–U4 no more than 2ζθn literals in Lt support fewer than three clauses.

Proof. We are going to work under the experiment P1’–P4’, thus here P ′k (n,m) will make reference to the
distribution under such experiment. Let S be the number of literals l ∈ Lt that support fewer than three clauses.
We just need to show that

PP′k(n,m) [S > 2ζθn] ≤ exp(−krn/4k), (14)

then Corollary 15 implies the assertion.
Using the second part of Lemma 16, under P1’–P4’ we can see that the random variable S is dominated by a
binomial with mean (1 + o(1))θζn . Hence, the Chernoff bound (8) shows that

PP′k(n,m) [S > 2ζθn] ≤ exp (−(1 + o(1))θζϕ(1)n) . (15)

By the assumptions on µ and θ we have θζϕ(1) > ρ/2k; hence, (14) follows from (15). ut

Proposition 27. Suppose that k ≥ 4 and 0 < r ≤ 2k ln 2− k, and that 0 ≤ θ ≤ 1. Set

µ =
ρ2k

2k − 1
, ζ =

1 + µ+ µ2/2

exp(µ)
,

If ζ < 1/3, then w.h.p.in a random pair (Φt, σt) chosen from the experiment U1–U4, there is a t-self-contained
set of size at least (1− 3ζ)θn.

This proof is by construction. Let us explain it in two big steps.

1. Start by taking out all the true literals in Lt which support fewer than three clauses. Let Z be this set. By
Proposition 26 we know that w.h.p.|Z| ≤ 2ζθn.

2. Now, take out the set of true literal for which, the number of clauses each of these literals support without
literals from Z̄ is less than two. It muss be made by middle of a recursive procedure as follow.
(a) Let Z1 = Z.
(b) Take any literal l /∈ Z1, then l support three or more clauses. Let Tl be the number of clauses supported

by l in which a literal from Z̄1 occurs. If Sl − Tl < 2, add it to Z1.
(c) Repeat this procedure θn− |Z| times. (We will show that after θn− |Z| times, w.h.p.|Z1 − Z| ≥ ζn).

Thus, we will prove w.h.p.the existence of a t-self-contained set of size at least (1− 3ζ)θn.

Proof (Proposition27). Let (Φt, σt) be chosen from the experiment P1’–P4’. We may condition on σ being the
all-true assignment, and on the event that at most 2ζθn true literals under σ, support fewer than three clauses, i.e.,
|Z| ≤ 2ζθn.
Note that in a random clause supported by l, the variables underlying the k − 1 negative literals in that clause are
distributed uniformly over Vt. One more time, let Z1 = Z and think on the recursive procedure described above,
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then, the probability that a random clause supported by l /∈ Z1 with at least one literal from Z̄1 is
1− (1− |Z1|/θn)k−1. Thus, Tl is dominated by a Binomial, Bin(Sl, λ), with λ = 1− (1− 3ζ)k−1 and

γ = P (Sl − Tl < 2 | Sl = j, j ≥ 3) = P (Tl ≥ Sl − 1 | Sl = j, j ≥ 3) (16)

=
∑
j=3

P [Bin(j, λ) ≥ j − 1]P (Sl = j | j ≥ 3) (17)

< (1 + o(1))
∑
j=3

jλj−1µj

j! exp(µ)(1− ζ)
(18)

= (1 + o(1))
µ(exp(λµ)− λµ− 1)

(1− ζ) exp(µ)
. (19)

Now we need to calculate how many literals are in Z1 − Z after θn− |Z| times.
For any true literal l /∈ Z1 that support more than two clauses i.e., (Sl ≥ 3), define the variable,

Yl =

{
1 if Tl ≥ Sl − 1
0 otherwise.

Observe that
∑(1−2ζ)θn
i=1 Yl is distributed Bin((1− 2ζ)θn, γ). Assuming that ζ < 1/3 and γ ≥ ζ/(1− 2ζ) we can

use Chernoff bound (8) to get

P (

(1−2ζ)θn∑
i=1

Yl ≤ ζθn) ≤ exp
{
− θn[(1− 2ζ)γ − ζ]ϕ

( ζ

(1− 2ζ)γ
− 1
)}

(20)

Finally, to pass from the experiment P1’–P4’ to U1–U4 we need

θ[(1− 2ζ)γ − ζ]ϕ
( ζ

(1− 2ζ)γ
− 1
)
>

ρ

2k
,

??????????? Thus we have gotten that w.h.p., under the experiment U1–U4, |Z1 − Z| ≥ ζθn.
ut

Proposition 28. For any k ≥ 3 there is a number χ = χ(k) > 0 such that for any 0 < r ≤ 2k ln 2 − k the
following is true. Let (Φt, σt) be a random pair chosen from the from the experiment U1–U4. Then w.h.p. for any
t-self-contained set S all variables x ∈ S ∪ S̄ are χn-rigid.

The proof of Proposition 28 uses an elementary ‘expansion property’ of the random formula Φ given by the
following Lemma.

Lemma 29. There is a number χ = χ(k) > 0 such that for all 0 < r ≤ 2k the random formula Φ has the
following property w.h.p.

There is no set Q of 1 ≤ |Q| ≤ χn variables such that the number of
clauses containing at least two variables from Q is at least 2|Q|. (21)

Proof. We use a first moment argument. Let 1 ≤ q ≤ χn and let Q0 = {x1, . . . , xq} be a fixed set of size q. For
any set Q we let Y (Q) be the number of clauses containing at least two variables from Q. Moreover, let Xq be
the number of sets Q of size q such that Y (Q) ≥ 2q. Since the distribution Fk(n,m) is symmetric with respect to
permutations of the variables, we have

EXq ≤
(
n

q

)
· P [Y (Q0) ≥ 2q] ≤ exp [q(1 + ln(n/q))] · P [Y (Q0) ≥ 2q] . (22)

Furthermore, the probability that a random k-clause contains two variables fromQ0 is at most
(
k
2

)
(q/n)2 (because

for each of the
(
k
2

)
pairs of ‘slots’ in the clauses the probability that both of them are occupied by variables from
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Q0 is at most (q/n)2). As Φ consists ofm independent k-clauses, Y (Q0) is stochastically dominated by a binomial
random variable Bin(m,

(
k
2

)
(q/n)2). Consequently, assuming that q/n ≤ χ is sufficiently small, we get

P [Y (Q0) ≥ 2q] ≤ P

[
Bin

(
m,

(
k

2

)
q

)
≥ 2q

]
≤ exp

[
−1.9q ·

[
ln

(
2q(

k
2

)
(q/n)2m

)
− 1

]]
[by Chernoff bound (8)]

≤ exp

[
−1.9q · ln

(
4

ek2r
· n
q

)]
≤ exp

[
−1.9q · ln

(
4

ek22k
· n
q

)]
. (23)

Choosing χ = χ(k) sufficiently small, we can ensure that (q/n)1/4 ≤ χ1/4 ≤ 4/(ek22k). Plugging this bound
into (23), we get

P [Y (Q0) ≥ 2q] ≤ exp [−1.1q · ln (n/q)] . (24)

Combining (22) and (24), we get EXq ≤ exp [−0.1q ln (n/q)] .
In effect, E

∑
1≤q≤χnXq = O(n−0.1). Hence, Markov’s inequality implies that w.h.p.

∑
1≤q≤χnXq = 0, in

which case (21) holds. ut

Proof (Proposition28). Let (Φt, σt) be a random pair chosen from the experiment U1–U4. By Lemma 29 we
know that w.h.p., there is a number χ = χ(k) > 0 such that (21) is satisfied. We are going to assume that this is
the case.
Let S be a self-contained set. Suppose that τ is a satisfying assignment such that the set Q of all variables x ∈
S ∪ S̄ such that τ(x) 6= σ(x) is non-empty. For each variable x ∈ Q there are two clauses C1(x), C2(x) that
are supported by x under σ and that consist of literals from S̄ only (because S is self-contained). Since τ is
satisfying and τ(x) 6= σ(x), both C1(x) and C2(x) contain another variable from Q. Hence, there are at least
2|Q| clauses that contain at least two variables from Q. Thus, (21) implies that w.h.p.|Q| > χn, and consequently
dist(σ, τ) ≥ |Q| > χn.

ut

Proof (Theorem 20, part 2). The assertion follows directly from Proposition 28 and Proposition 27. ut

5.3 Forced variables

Let (Φ, σ) be a formula/assignment pair. A clause C forces a variable x ∈ Vt if C contains k − 1 literals from
{x1, x̄1, . . . , xt, x̄t}, none of which satisfies C under σ, and either the literal x or x̄, which does.

Lemma 30. Suppose that ρ ≥ ρ0, k ≥ k0, and kθ ∼ ln(ρ) − 10. Then w.h.p. in a pair (Φt, σt) chosen from the
experiment U1–U4 at least 0.991θn variables in Vt are forced.

Proof. Let F be the event that at least 0.991θn variables in Vt are forced. We are going to show that

PP′k(n,m) [F ] ≥ 1− exp(−1.1ρ/2k), (25)

so that the assertion follows from Corollary 15. Thus, let (Φt, σt) be a pair chosen from the experiment P1’–P4’.
We may assume without loss of generality that σt is the all-true assignment. For each variable x ∈ Vt the number
of clauses that x supports has a binomial distribution with mean µ = ρ · 2k/(2k − 1). Furthermore, if C is a
random clauses supported by x, then C contains k − 1 random negative literals; the probability that all of these
are in V \ Vt equals (1 − θ + o(1))k−1. Hence, the number Fx of forcing clauses for x is binomially distributed
with mean

E [Fx] = µ(1− θ + o(1))k−1 ≥ ρ(1− θ)k−1

≥ ρ exp
[
−(θ + θ2)(k − 1)

]
≥ ρ exp

[
−θk − θ2k

]
≥ exp(5).

Therefore, for any x ∈ Vt we have P [Fx = 0] ≤ exp(− exp(5)), and the events ({Fx = 0})x∈Vt are mu-
tually independent. Hence, the number Z of variables x ∈ Vt with Fx = 0 is binomially distributed with mean
exp(− exp(−5))θn, then by Chernoff bounds

P [Z ≥ 0.009θn] ≤ exp(−0.009θn) ≤ exp(−1.1ρ/2k).

This proves (25). ut
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Proof (Theorem 20, part 1). We need to deal with general values lnn/n � θ ≤ θ0 = (ln(ρ) − 10)/k. Let
t = (1 − θ)n and t0 = (1 − θ0)n. To obtain a pair (Φt, σt) from the experiment U1–U4, one can proceed as
follows. First, choose a pair (Φt0 , σt0) from the experiment U1–U4 with t0 variables decimated. Then, assign the
variables in x ∈ Vt0 \ Vt with the truth values σt0(x), simplify the formula, and let σt(y) = σt0(y) for all y ∈ Vt.
We are going to use this experiment to analyze the number of forced variables in (Φt, σt).
The above experiment shows that any variable x ∈ Vt that is forced in (Φt0 , σ0) remains forced in (Φt, σt). Let
F be the set of forced variables in (Φt0 , σ0). Given that |F| = j, the set F is a uniformly random subset of Vt0 .
Hence, if we condition on the event that |F| ≥ 0.991θ0n, then |F ∩ Vt| has a hypergeometric distribution with
mean at least 0.991θn. Therefore, by Chebyshev’s inequality, we have |F ∩ Vt| ≥ (0.991θ − o(1))n ≥ 0.99θn
w.h.p. (here we use that θn� 1). Thus, the theorem follows from Lemma 30. ut

6 Proof of Theorem 21

6.1 Main ideas of the proof
We work here with the planted model. Let (Φ, σ) a pair chosen from the distribution Pk (n,m) and Φt denote
the formula obtained from Φ by substituting the values σ(x1), . . . , σ(xt) for the first t variables. Without loss of
generality, we may assume that σ = 1 is the all-true assignment. Let Zσt be the number of solutions compatible
with the partial assignment of variables up to time t i.e., Zσt = |{τ ∈ S(Φt)}|, then

E(Zσt) =
∑
τ∈Σ

P
[
τ ∈ S(Φ) | τ(x1) = σ(x1), . . . , τ(xt) = σ(xt), σ ∈ S(Φ)

]
, (26)

where Σ is the set of all 2n assignments.
Let ci be the i-th clause of Φ and define the next events.

Ai : = {τ satisfies ci}
Bi : = {σ satisfies ci}
C : = τ(x1) = σ(x1), . . . , τ(xt) = σ(xt),

then observe that

P
[
τ ∈ S(Φ) | τ(x1) = σ(x1), . . . , τ(xt) = σ(xt), σ ∈ S(Φ)

]
= P

[
∩mi=1 (Ai | Bi ∩ C)

]
.

Let z be the overlap between σ and τ , i.e, the number of variables to which σ and τ assign the same value. It
is well known that the probability that a fix pair of truth assignments σ and τ satisfies the i-th random clause ci
depends only on the number z. That follows because if ci is not satisfied by σ, the only possibility for ci neither
be satisfied by τ is because all variables in ci lie in the overlap.
Let z = γn, then the sequence {Ai ∩ Bi | z}i≥1 is a sequence of independent events and P (Ai ∩ Bi | z) =

1− 1
2k−1 + γk

2k
(see equation (3) in [4]).

Furthermore, observe that the event {Ai | Bi ∩ C} imply that {Ai | Bi ∩ {γn = t + β(n − t)}}, for some
0 ≤ β ≤ 1. Taking α = 1− β we get

P
[
∩mi=1 (Ai | Bi ∩ C)

]
≤ P

[
∩mi=1 (Ai | Bi ∩ {γ = (1− αθ)})

]
=
Πm
i=1P

[
(Ai ∩Bi | γ = (1− αθ))

]
P
[
Bi | γ = (1− αθ)]

=
(1− 1

2k−1 + γk

2k

1− 1
2k

)m
=
(

1− 1− γk

2k − 1

)m
.

Hence,

E(Zσt) ≤
n∑

γ=t/n

∑
overlap(σ,τ)=γn

(
1− 1− γk

2k − 1

)m
=

n∑
γ=t/n

(
n

γn

)(
1− 1− γk

2k − 1

)m
.
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Let Xγ = |{τ ∈ S(Φt,σ) : overlap(σ, τ) = γn}| , then we can write E(Zσt) =
∑
γ EXγ , thus

EXγ ≤
(
n

γn

)(
1− 1− γk

2k − 1

)m
. (27)

Let us make a change of parameter. Note that if overlap(σ, τ) = γn then dist(σ, τ) = αθn. Consider
Xα = |{τ ∈ S(Φt,σ) : dist(σ, τ) = αθn}| , thus from (27) we have

EXα ≤
(
θn

αθn

)(
1− 1− (1− αθ)k

2k − 1

)m
. (28)

Taking logarithms and bounding the binomial coefficient via Stirling’s formula we obtain

ln EXα

n
≤ ψ(α), (29)

where ψ(α) = −αθ lnα− (1− α)θ ln(1− α) + r ln
(

1− 1−(1−αθ)k
2k−1

)
.

The crucial point here is that if for some fix θ, exits α > 0 such that; Ψ(α) < 0, then by Markov inequality
follows that w.h.p Φt does not have any satisfying assignment τ , such that dist(σ, τ) = αθn. To establish the
‘shattering’ part we are going to prove the following: Under the assumptions of Theorem 21 part 1, there exist
0 < a1 < α < a2 < 1 depending only on k, ρ such that w.h.p. we have

Ψ(α) < 0, for 0 < a1 < α < a2 < 1, (30)

then, following the idea in [2] to show the existence of clusters in the solution space, we get a partition of the set
S(Φt,σ) into well-separated regions. The picture of ψ(α) is described by Figure 2 left side.
These regions are build as follow:

Fig. 2. Left and right sides represent ψ(α) for shattering and condensation phases respectively.

Choose any σ1 ∈ S(Φt) and let Cσ1
= {χ ∈ S(Φt) : dist(χ, σ1) ≤ a1θn}. Then, choose σ2 ∈ S(Φt) \ Cσ1

and let
Cσ2 = {χ ∈ S(Φt) \ Cσ1 : dist(χ, σ2) ≤ a1θn}. Proceed inductively until all remaining satisfying assignments
have been assigned to a region Cσi which diameter at most a1θn. Suppose we find N of such regions Cσi ’s. Let
Rl = Cσl \

⋃l−1
i=1 Cσj and R0 = S(Φt)\

⋃N
i=1Ri. Note that R0, R1, . . . , RN are disjoint sets such that; S(Φt,σ) =

∪N0 Rj . Furthermore, since w.h.p. there are not any pair of truth assignment at distance a1θn ≤ dist(χ, τ) ≤ a2θn,
then dist(Ri, Rj) ≥ a2θn for any i 6= j ∈ {1, . . . , N}. The decomposition R0, . . . , RN witnesses that S(Φt)
shatters.
To prove Condensation we also analyze the first moment of Xα. Here, we will prove that for some values of θ,
i.e., when the fix variables overcome some value, w.h.p. it is not possible to find another solution τ such that;
dist(σ, τ) ≥ α. Hence, if exist more solutions they should be close to each other with respect to the Hamming
distance. The pictures suggested by this result comes in Figure 2 right side.
With respect to pairwise distances of satisfying assignments, under the situation described by Figure 2 left side,
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we need to prove that sup0<α≤0.49 ψ(α) < θ ln 2 + 2kρ ln(1−2−k)/k−ρ/2k−1. This implies that w.h.p. only an
exponentially small fraction of all the satisfying assignments of Φt lies within distance ≤ 0.49θn between them.
From this we derive the statement made in Theorem 21 on the pairwise distance.
In addition, the fact that the average pairwise distance of satisfying assignments is ≥ 0.49θn w.h.p. implies in
combination with a double counting argument the claim about the marginals Mx(Φt) in Theorem 22.

6.2 Shattering

In this section we prove the first part of Theorem 21. The main step of the proof is summarized in the following
proposition.

Proposition 31. Let k ≥ 6 and r > 0 be fixed. Moreover, let 0 < θ ≤ 1 and let

ψ : (0, 1)→ R, α 7→ −αθ lnα− (1− α)θ ln(1− α) + r ln

(
1− 1− (1− αθ)k

2k − 1

)
.

Suppose that there is a number a ∈ (0, 1) such that

ψ(a) + ρ/2k < 0 and sup
0<α<a

ψ(α) < θ ln 2 + 2kρ ln(1− 2−k)/k − ρ/2k. (31)

Then there is ε = ε(k, ρ) such that for Φt generated by the experiment U1–U4, the set S(Φt) is (a − ε, a + ε)-
shattered.

To establish Proposition 31 and how it implies the first part of Theorem 21, first we need to prove the following.

Lemma 32. Keep the assumptions from Proposition 31 and let

b = θ ln 2 + 2kρ ln(1− 2−k)/k.

There exist numbers ξ > 0, 0 < a1 < a2 < 1 such that a pair (Φ, σ) chosen from the distribution Uk (n,m) has
the following two properties with probability at least 1− exp(−ξn).

1. Φt does not have a satisfying assignment τ with a1n < dist(σ, τ) < a2n.
2. |{τ ∈ S(Φt) : dist(σ, τ) < a2n}| ≤ exp((b− ξ)n).

Proof. Let (Φ, σ) a pair chosen from the distributionPk (n,m). For α > 0, let

Xα = |{τ ∈ S(Φt) : dist(σ, τ) = αθn}| .

Assume ψ satisfies (31) and let a ∈ (0, 1) be such that ψ(a) + ρ/2k < 0. As ψ is continuous there exist 0 < a1 <
α < a2 < 1 and ξ1 > 0 such that

sup
a1≤α≤a2

ψ(α) < −ρ/2k − 2ξ1. (32)

Combining (29) and (32) we conclude that EXα ≤ exp
[
−n(ρ/2k + 2ξ1)

]
for all a1 ≤ α ≤ a2. Summing over

integers a1n ≤ j ≤ a2n we see that for large n∑
a1n≤j≤a2n

EXj/n ≤ n exp
[
−n(ρ/2k + 2ξ1)

]
≤ exp

[
−n(ρ/2k + ξ1)

]
.

Hence, by Markov’s inequality the probability that there is a satisfying assignment τ that coincides with σ on
the first t variables such that a1n ≤ dist(σ, τ) ≤ a2n is bounded by exp(−n(ρ/2k + ξ1)). This proves the first
assertion.
Since we are assuming that sup0<α<a ψ(α) < b − ρ/2k, and as (32) shows that ψ(α) < −ρ/2k − 2ξ1 <
b− ρ/2k − 2ξ1 for all a1 ≤ α < a2, then, there is a number ξ2 > 0 such that

sup
0<α≤a2

ψ(α) ≤ b− ρ/2k − 3ξ2.

Hence, (29) implies that

EXα ≤ exp(nψ(α)) ≤ exp(n(b− ρ/2k − 3ξ2)) for all 0 < α ≤ a2.
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Taking the sum over integers 0 ≤ j ≤ a2n we get for large enough n∑
0≤j≤a2n

EXj/n ≤ n exp(n(b− ρ/2k − 3ξ2)) ≤ exp(n(b− ρ/2k − 2ξ2)).

That is, the expected number of assignments τ ∈ S(Φt) such that dist(σ, τ) ≤ a2n is bounded by exp(n(b −
ρ/2k − 2ξ2)). Hence, Markov’s inequality entails that with probability at least 1− exp(−n(ρ/2k + ξ2)) there are
at most exp(n(b− ξ2)) such satisfying assignments τ . This proves the second assertion.
Finally, the result on Uk (n,m) follows directly from Corollary 13. ut

Proof (Proposition 31). Let ξ, a1, a2 be the numbers provided by Lemma 32 and let (Φ, σ) be a pair chosen from
the distribution Uk(n,m). With each assignment τ ∈ S(Φt) we associate a set

C(τ) = {χ ∈ S(Φt) : dist(χ, τ) ≤ a1n}.

Moreover, we call τ ∈ S(Φt) good if |C(τ)| ≤ exp((b − ξ)n) and there is no χ ∈ S(Φt) such that a1n ≤
dist(χ, τ) ≤ a2n. Let Sgood be the set of all good τ ∈ S(Φt) and Sbad = S(Φt) \ Sgood. By Corollary 14,
lemma 32 and our choice of b ensure that Φ has the following two properties w.h.p.:

|S(Φt)| ≥ expn(b− ρ/2k), (33)
|Sgood| ≥ (1− exp(−ξn)) · |S(Φt,σ)| . (34)

Assuming that (33) and (34) hold and that n is sufficiently large, we are going to construct a decomposition of
S(Φt) into subsets as required by SH1–SH2. To this end, choose some σ1 ∈ Sgood. Having defined σ1, . . . , σl, we
choose an arbitrary σl+1 ∈ Sgood \

⋃l
j=1 C(σj), unless this set is empty, in which case we stop. Let σ1, . . . , σN

be the resulting sequence and define

Rl = C(σl) \
l−1⋃
j=1

C(σj) for 1 ≤ l ≤ N, and R0 = S(Φt,σ) \
N⋃
l=1

Rl.

Then S(Φt) = R0 ∪ · · · ∪ RN . (Observe that possibly R0 = ∅ while Rl 6= ∅ for all 1 ≤ l ≤ N as σl ∈ Rl.)
Furthermore, for each 1 ≤ l ≤ N we have Rl ⊂ C(σl) and thus

|Rl| ≤ |C(σl)| ≤ exp((b− ξ)n) [because σl is good]
≤ |S(Φt)| · exp(−ξn) [by (33)]. (35)

Furthermore, as R0 ⊂ Sbad, (34) implies

|R0| ≤ |Sbad| ≤ exp(−ξn)) · |S(Φt,σ)| . (36)

Combining (35) and (36) we see that the decomposition R0, . . . , RN satisfies SH1. Furthermore, SH2 is satisfied
by construction. ut

Now, we just need to verify (31).

Lemma 33. Assume that 0 ≤ θ ≤ exp(ρ− 2)/(ρk). Let a = exp(2− ρ). Then ψ(a) < −aθ/2.

Proof. We have

ψ(a) ≤ aθ(1− ln a)− ρ

k

(
1− (1− aθ)k

)
≤ aθ(1− ln a)− ρ

k
(1− exp(−akθ))

≤ aθ(1− ln a)− ρ

k

(
akθ − (akθ)2/2

)
= aθ [1− ln a− ρ(1− akθ/2)] ,

where we have used exp(−z) ≤ 1− z+ z2/2 for z ≥ 0. Since kθρ ≤ exp(ρ− 2) by assumption, our choice of a
implies that ψ(a) ≤ aθ [1− ln a− ρ+ a exp(ρ− 2)/2] = −aθ/2, as claimed. ut

Lemma 34. Assume that 0 ≤ θ ≤ exp(ρ− 2)/(ρk). Let a = exp(2− ρ). Then supα<a ψ(α) ≤ 3
2e2kρ .
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Proof. Let 0 ≤ α < a. We have

ψ(α) ≤ θ(α− α lnα− αρ(1− αkθ/2)).

Let ψ1(α) be the expression on the r.h.s. Then

d

dα
ψ1(α) = θ [− lnα− ρ+ αkθ] ,

d2

dα2
ψ1(α) = θ [kθ − 1/α] .

Thus, our assumption on θ implies that d2

dα2ψ1(α) < 0 for all 0 < α < a, and therefore ψ1 has a unique local
maximum in the interval (0, α). To pinpoint this maximum, note that for α0 = exp(−ρ) the first derivative
d
dαψ1(α0) is positive. Moreover, at α1 = exp(1− ρ) we have d

dαψ1(α1) < 0. Hence, the unique local maximum
of ψ1 lies in the interval (α0, α1). To study the maximum value, consider the function ψ2 : α 7→ α−α lnα−αρ.
Its derivative is d/dαψ2(α) = ρ − lnα, so that the maximum of this function occurs at α0. Furthermore, the
quadratic term α 7→ α2k/2 is monotonically increasing in α. Therefore,

sup
0<α<a

ψ(α) ≤ sup
0<α<a

ψ1(α) = sup
α0<α<α1

ψ1(α) ≤ θ(ψ2(α0) + α2
1k/2) = 3θ exp(−ρ)/2.

Finally, the assertion follows from the assumed bound on θ. ut

Proof (Theorem 21, part 1). Assume that ρ ≤ k ln 2− ln k and

ρ

k ln 2
(1 + ρ−2 + 22−k) ≤ θ ≤ exp(ρ− 2)/(ρk).

Let a = exp(2− ρ). Lemma 33 shows that

ψ(a) + ρ/2k ≤ ρ/2k − exp(2− ρ)θ/2 ≤ ρ/2k − exp(2− ρ)ρ

k ln 2
=

ρ

2k

(
1− 2k exp(2− ρ)

k ln 2

)
.

Since ρ ≤ k ln 2− ln k, the r.h.s. is negative. By Lemma 34 we have

θ ln 2 +
2kρ

k
ln(1− 2−k)− ρ/2k ≥ θ ln 2− ρ

k
− ρ/2k−1

≥ 1

kρ
+ 22−kρ ln 2− ρ/2k−1 ≥ 1

kρ
> sup
α<a

ψ(α). (37)

Thus, the assertion follows from Proposition 31. ut

6.3 Condensation

Here we prove the second part of Theorem 21. The following proposition reduces that task to a problem in calculus.

Proposition 35. Let k ≥ 3 and r > 0 be fixed. Let 0 < θ ≤ 1 and let

ψ : (0, 1)→ R, α 7→ −αθ lnα− (1− α)θ ln(1− α) + r ln

(
1− 1− (1− αθ)k

2k − 1

)
.

If there is a number a ∈ (0, 1) such that

sup
a<α≤1

ψ(α) + ρ/2k < 0 (38)

then Φt is 2aθ-condensed.

Proof. Let (Φ, σ) be a pair chosen from the planted distribution Pk(n,m). For α > 0, and

Xα = |{τ ∈ S(Φt) : dist(σ, τ) = αθn}| .

By (29) we know 1
n ln EXα ≤ ψ(α), then, assuming (38) 1

n ln EXα < −ρ/2k for α > a. By Markov’s
inequality we have

P [∃τ ∈ St(Φt) : d(σ, τ) ≥ aθn] ≤ θn · exp(−(Ω(1) + ρ/2k)n) < exp(−ρn/2k).

Therefore, the assertion follows from Corollary 13. ut
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Lemma 36. Suppose that ρ ≤ k ln 2−2 ln k and θ = (1−1/ρ2) ρ
k ln 2 . Moreover, assume that ρ ≥ ρ0 and k ≥ k0

for certain constants ρ0, k0. Let a = exp(2− ρ). Then (38) is satisfied.

Proof. Let h (·) be the entropy function. We have

ψ(α) ≤ θh(α)− ρ

k
(1− exp(−αkθ)).

To bound the r.h.s., we are going to consider several cases.

Case 1: α ≤ 1/(kρθ). As α ≥ a = exp(2− ρ), we obtain

ψ(α) ≤ αθ [1− lnα− ρ+ αkρθ/2] ≤ αθ
[
αkρθ

2
− 1

]
≤ −αθ/2.

The assumption ρ ≤ k ln 2− 2 ln k ensures that the last term is smaller than −ρ/2k.
Case 2: 1/(kρθ) < α < 1/(kθ). We have

ψ(α) ≤ αθ [1− lnα− ρ+ αkρθ/2]

≤ αθ
[
1 + ln(kρθ)− ρ+

αkρθ

2

]
≤ αθ [1 + ln(kρθ)− ρ/2] [as α < 1/(kθ)]
≤ αθ [1− ln ln 2 + 2 ln ρ− ρ/2] [as θ ≤ ρ

k ln 2 ]
≤ −αθρ/4.

The assumption ρ ≤ k ln 2− 2 ln k ensures that the last term is smaller than −ρ/2k.
Case 3: 1/(kθ) < α ≤ α0 = 0.15. We have

ψ(α) ≤ θh(α)− ρ

k
(1− exp(−αkθ)) ≤ θh(α0)− ρ

k
(1− 1/e)

≤ ρ

k

[
h(α0)

ln 2
− 1 + 1/e

]
.

The choice of α0 ensures that the last term is smaller than −ρ/2k.
Case 4: α0 < α. As kθ = (1− 1/ρ2)ρ/ ln 2, we get

ψ(α) ≤ θh(α)− ρ

k
(1− exp(−αkθ)) ≤ θ ln 2− ρ

k
(1− exp(−α0(1− 1/ρ2)ρ/ ln 2))

≤ ρ

k

[
exp(−α0ρ)− 1/ρ2

]
.

The last term is smaller than −ρ/2k.
ut

Proof (Theorem 21, part 2). Let θ0 = (1− 1/ρ2)ρ/(k ln 2) and t0 = (1− θ0)n. Suppose that θ ≥ θ0. Then Φt is
obtained from Φt0 by assigning some further variables. Therefore,

max {d(σ, τ) : σ, τ ∈ S(Φt)} ≤ max {d(σ, τ) : σ, τ ∈ S(Φt0)} .

Hence, Proposition 35 and Lemma 36 imply that Φt is exp(2− ρ)-condensed w.h.p. ut

6.4 Pairwise distances

Recall that Φt denotes the formula obtained by substituting the values σ(xi) for xi for 1 ≤ i ≤ t. The next lemma
tell us that w.h.p. almost all the satisfying assignments in S(Φt) are such that, the distance between any two of
them is at least 0.49θn.

Lemma 37. Suppose that θ ≥ ρ
k ln 2 (1 + 1/ρ2 + k/2k−2). Let (Φ, σ) be a pair chosen from the distribution

Uk(n,m). W.h.p. we have

|{τ ∈ S(Φt) : dist(τ, σ) ≤ 0.49θn}| ≤ exp(−Ω(n)) |S(Φt)| .
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Proof. Consider the pair (Φ, σ) chosen from the planted model Pk(n,m). For α > 0, let

Xα = |{τ ∈ S(Φt) : dist(σ, τ) = αθn}| .

We know that lnEXα
n ≤ ψ(α) by (29), where ψ(α) is the function given in Proposition 31. Assume that

sup
α≤0.49

ψ(α)− θ ln 2− r ln
(
1− 2−k

)
< −ρ/2k−1, (39)

and let b = θ ln 2+r ln
(
1− 2−k

)
. Asψ is continuos there exists ε > 0 such that supα≤0.49 ψ(α) ≤ b−ρ/2k−1−ε,

thus for α ≤ 0.49
E[Xα] ≤ exp(nψ(α) ≤ exp[n(b− ρ/2k−1 − ε)],

and ∑
0≤j≤0.49θn

E[Xj/θn] ≤ θn exp[n(b− ρ/2k−1 − ε)]

≤ exp[n(b− ρ/2k−1)],

then the expected number of assignments τ ∈ S(Φt) such that dist(σ, τ) ≤ 0.49θn is bounded by exp[n(b −
ρ/2k−1)]. Hence, Markov’s inequality entails that

P
[
|{τ ∈ S(Φt) : dist(τ, σt) ≤ 0.49θn}| ≥ exp[n(b− ρ/2k − ε)]

]
≤ exp[n(−ρ/2k + ε)],

thus with probability 1− exp[n(−ρ/2k + ε)]:

|{τ ∈ S(Φt) : dist(τ, σt) ≤ 0.49θn}| < exp[n(b− ρ/2k − ε)].

By Corollary 14 we know w.h.p. |S(Φt)| ≥ exp[n(b− ρ/2k)], then we get

|{τ ∈ S(Φt) : dist(τ, σt) ≤ 0.49θn}| < exp(−Ω(n)) |S(Φt)| .

Now, we are going to show

sup
α≤0.49

ψ(α)− θ ln 2− r ln
(
1− 2−k

)
< −ρ/2k−1.

We have

ψ(α)− θ ln 2− 2kρ

k
ln
(
1− 2−k

)
= θ(h(α)− ln 2) +

2kρ

k
ln

[
1 +

(1− αθ)k − 21−k(1− (1− αθ)k)

2k − 1

]
≤ θ(h(α)− ln 2) +

ρ

k
(1− αθ)k + 2−k

≤ θ(h(α)− ln 2) +
ρ

k
exp(−αkθ) + 2−k.

The differential of the last expression with respect to θ is negative, and thus the function is monotonically de-
creasing in θ. Therefore, it suffices to consider the minimum value θ = ρ/(k ln 2). Thus, we obtain

ψ(α)− θ ln 2− 2kρ

k
ln
(
1− 2−k

)
≤ ρ

k

(
h(α)

ln 2
− 1 + exp(−αρ/ ln 2)

)
+ 2−k.

We consider a few different cases.

Case 0: α < exp(2− ρ). Lemma 34 shows that ψ(α) ≤ 1/(kρ) and (37) shows that

θ ln 2 + 2k
ρ

k
ln(1− 2−k) ≥ θ ln 2− ρ/k − ρ/2k.

Hence,

ψ(α)− θ ln 2− 2kρ

k
ln
(
1− 2−k

)
≤ 1

kρ
− θ ln 2 +

ρ

k
+ ρ/2k.

Since we are assuming that θ ≥ ρ
k ln 2 (1 + 1/ρ2 + k/2k−2), the r.h.s. is smaller than ρ/2k−1.
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Case 1: exp(2− ρ) ≤ α ≤ exp(−ρ/2). Bounding the exponential by a quadratic function, we get

ψ(α)− θ ln 2− r ln
(
1− 2−k

)
≤ αρ

k ln 2

[
1− lnα− ρ+

αρ2

4 ln 2

]
+ 2−k

≤ αρ

k ln 2

[
−1 +

(αρ)2

2 ln 2

]
+ 2−k < −ρ/2k−1,

provided that ρ0 ≤ ρ ≤ k ln 2− 2 ln k.
Case 2: exp(−ρ/2) ≤ α ≤ 1/(2ρ). Bounding the exponential by a quadratic function, we get

ψ(α)− θ ln 2− r ln
(
1− 2−k

)
≤ αρ

k ln 2

[
1− lnα− ρ+

(αρ)2

2 ln 2

]
+ 2−k < −ρ/2k−1,

provided that ρ0 ≤ ρ ≤ k ln 2− 2 ln k.
Case 3: 1/(2ρ) < α ≤ 10 ln(2)/ρ. Suppose that α = x ln(2)/ρ for some 1/2 ≤ x ≤ 10 ln 2. Then

ψ(α)− θ ln 2− r ln
(
1− 2−k

)
≤ ρ

k

[
x ln 2

ρ
(1− lnx− ln ln 2 + ln ρ)− 1 + exp(−x)

]
+ 2−k.

As x remains bounded away from 0, the term exp(−x)− 1 is strictly negative. Thus, the entire expression is
smaller than −ρ/2k−1 for ρ ≥ ρ0 sufficiently large.

Case 4: 10 ln(2)/ρ < α ≤ 0.49. We have

ψ(α)− θ ln 2− r ln
(
1− 2−k

)
≤ ρ

k

(
h(0.1)

ln 2
− 1 + exp(−10)

)
+ 2−k.

The r.h.s. is clearly smaller than −ρ/2k−1.

The assertion follows from Theorem 13. ut
Proof (Theorem 21, part 3). Lemma 37 directly implies the third part of Theorem 21. ut

7 Proof of Theorem 22

7.1 Bounding the marginals away from 0, 1

We may assume that θ ≥ ρ/(k ln 2). The goal is to show that the marginals of a substantial fraction of the variables
xt+1, . . . , xn are bounded away from 0, 1.
We set up an auxiliary graph G whose vertices are all pairs (x, τ) of variables x ∈ Vt and assignments τ ∈ S(Φt).
A pair (x, τ) is connected by an edge with another pair (x, τ ′) if τ(x) = τ ′(x). (Thus, the graph consists of
components (x, ·) with x ∈ Vt.) Lemma 37 implies the following.

Corollary 38. Let Φt be the formula obtained through the experiment U1–U4. W.h.p. the number of edges of G,
|E(G)| satisfies

2|E(G)| ≤ 0.511|S(Φt)|2θn.
Proof. By Lemma 37 for almost all the satisfying assignments in S(Φt), the ‘overlap’ between any two of them
is less than 0.51θn, i.e., W.h.p. we have

|{τ ∈ S(Φt) : overlap(τ, σ) < 0.51θn}| > [1− exp(−Ω(n))] |S(Φt)| .

Thus, for any pair of such satisfying assignments τ, τ ′, the number of edges incident between {(τ, x) : x ∈ Vt}
and {(τ ′, x) : x ∈ Vt} is at most (1 + o(1))0.51θn. Counting the number of edges from each assignment τ , we
have

2|E(G)| ≤ (1 + o(1))0.51|S(Φt)|2θn (40)

ut
Proof (Theorem 22, part 1). To bound the marginals away from 0, 1 assume (40) and note that any variable x
whose marginal does not lie in (0.01, 0.99) is such that the set
{(τ, x) : τ ∈ S(Φt)} induces at least (1 + o(1))0.99|S(Φt)|(|S(Φt)| − 1)/2 edges. Hence, if we let ν be the
number of such variables, then:
(1 + o(1))0.99|S(Φt)|(|S(Φt)| − 1)ν ≤ 2|E(G)| ≤ (1 + o(1))0.51|S(Φt)|(|S(Φt)| − 1)θn.
Hence, ν ≤ 0.51

0.99θn ≤
2
3θn.

ut
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7.2 Concentration of the marginals about 0, 1

To prove Theorem 22, part 2, we need the following lemma.

Lemma 39. Suppose that θ ≤ ρ/(k ln 2). Let (Φ, σ) be a pair chosen from the distribution Uk (n,m). W.h.p.
there is no set of variables Z ⊂ Vt of size 2kn/2k ≤ |Z| ≤ (eρ)−4θn such that each variable in Z supports two
clauses under σ, each of which contains an occurrence of a variable in Z that evaluates to ‘false’ under σ.

Proof. We work with the planted model P ′k (n,m). Let p be such that the expected number of clauses is m, i.e.,
(2k − 1)

(
n
k

)
p = m, and Z ⊂ Vt a set of size z. For any x ∈ Z we say that it is ‘bad’ if it supports two clauses

under σ, each one of which contains an occurrence of another variable in Z that evaluates to ‘false’ under σ.
Note that for a fix x ∈ Z, the number of clauses it supports is a random variable with distribution
Bin

(
(z − 1)

(
n
k−2
)
, p
)

. Denote it by NZ . Thus,

P (x is bad) = P (NZ = 2) <

(
z

(
n

k − 2

)
p

)2

.

Furthermore, observe that for any x and x′ in Z the events {x is bad} and {x′ is bad} are independent. Hence,

P ({x is bad,∀x ∈ Z}) <
(
z

(
n

k − 2

)
p

)2z

≤ (αkθρ)2z, with α = z/(θn),

and the probability that there is a bad set of size z is bounded by(
θn

z

)
(αkθρ)2z ≤

(
eθn

z

)z
(αkθρ)

2z
=
[
eα(kθρ)2

]z ≤ (eαρ4/ ln2 2)z ≤ exp(−z).

The assumption on z ensures that this is sufficiently small to move from the planted model to Uk (n,m) via
Corollary 15. ut

Proof (Theorem 22, part 2). If kθ < ln(ρ)/2, then the existence of forced variables immediately implies part 3
of Theorem 7. Thus, let us assume that ln(ρ)/2 ≤ kθ ≤ ρ/ ln 2. Let (Φ, σ) be a pair chosen from the distribution
Uk(n,m). Let S be the set of rigid variables. By Theorem 20 part 2, we have |S| ≥ ρ3 exp(−ρ)θnw.h.p.Ḋefine an
auxiliary bipartite graph G as follow. The vertices of the graph are the variables in S and the satisfying assignments
in S(Φt). Each variable x ∈ S is connected with all τ ∈ S(Φt) such that τ(x) 6= σ(x). Since S(Φt) is exp(2−ρ)/k
condense (part 2 of Theorem 7), then for any two satisfying assignment σ, τ we have

dist(σ, τ) ≤ exp(2− ρ)θn

k
, (41)

which implies that |Z| < (eρ)−4 and by the Lemma 39 |Z| ≤ 2kn
2k

. Thus, the number of edges of G satisfies

|E(G)|
2

=
∑
x

∑
σ,τ

Iσ(x) 6=τ(x) ≤
2kn

2k
|S(Φt)|2. (42)

By other side, assume M(x) /∈ (0, ε) ∪ (1− ε, 1], then∑
σ,τ

Iσ(x)6=τ(x) ≥ ε(1− ε)|S(Φt)|2. (43)

Let ν be the number of variables which satisfies (43), thus∑
x

∑
σ,τ

Iσ(x)6=τ(x) ≥ νε(1− ε)|S(Φt)|2, (44)

and (42) and (43) together imply

ν ≥ 2kn

ε(1− ε)2k
.

ut

Proof (Theorem 7, part 4). This follows directly by applying Lemma 39 to the self-contained set obtained in
subsection 5.2. ut
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8 Proof of Theorem 10

8.1 Quasi-randomness properties

The proof of Theorem 10 is based on results from [8]. These results show that, in order to obtain Theorem 10,
we essentially have to verify that the outcome Φt of the experiment U1–U4 enjoys certain quasi-randomness
properties. We begin by stating the necessary properties. To this end, we define

δt = exp(−cθk), (45)

where c > 0 is a small absolute constant (independent of k, r, t, n).
Fix a k-CNF Φ and an assignment σ ∈ {0, 1}V . Let Φt,σ denote the CNF obtained from Φ by substituting
σ(x1), . . . , σ(xk) for x1, . . . , xt and simplifying. Let G = G(Φt,id,1) denote the factor graph. For a variable
x ∈ Vt and a set Q ⊂ Vt let

N≤1(x,Q) = {b ∈ N(x) : |N(x) ∩Q \ {x}| ≤ 1 ∧ 0.1θk ≤ |N(b)| ≤ 10θk}. (46)

Thus, N≤1(x,Q) is the set of all clauses that contain x (which may or may not be in Q) and at most one other
variable from Q. In addition, there is a condition on the length |N(b)| of the clause b in the decimated formula
Φt,σ . Observe that having assigned the first t variables, we should ‘expect’ the average clause length to be θk. For
a linear map Λ : RVt → RVt let ‖Λ‖ut signify the norm

‖Λ‖ut = max
ζ∈RVt\{0}

‖Λζ‖1
‖ζ‖∞

.

Definition 40. Let δ > 0. We say that (Φ, σ) is (δ, t)-quasirandom if Φ satisfies Q0 and Φt,σ satisfies Q1–Q4
below.

Q0. There are no more than ln lnn redundant clauses. Moreover, no variable occurs in more than lnn clauses of
Φ.

Q1. No more than 10−5δθn variables occur in clauses of length less than θk/10 or greater than 10θk. Moreover,
there are at most 10−4δθn variables x ∈ Vt such that

(θk)3δ ·
∑
b∈N(x) 2−|N(b)| > 1.

Q2. If Q ⊂ Vt has size |Q| ≤ δθn, then there are no more than 10−4δθn variables x such that either∑
b∈N(x):|N(b)∩Q\{x}|=1

2−|N(b)| > ρ(θk)5δ, or (47)

∑
b∈N(x):|N(b)∩Q\{x}|>1

2|N(b)∩Q\{x}|−|N(b)| >
δ

θk
, or (48)

∣∣∣∣∣∣
∑

b∈N≤1(x,Q)

sign(x, b)

2|N(b)|

∣∣∣∣∣∣ > δ

1000
. (49)

Q3. For any 0.01 ≤ z ≤ 1 and any set Q ⊂ Vt of size 0.01δ(n− t) ≤ |Q| ≤ 100δ(n− t) we have∑
b:|N(b)∩Q|≥z|N(b)|

|N(b)| ≤ 1.01|Q|/z.

Q4. For any set Q ⊂ Vt of size |Q| ≤ 10δ(n− t) the linear operator

ΛQ : RVt → RVt , Γ 7→
( ∑
b∈N≤1(x,Q)

∑
y∈N(b)\{x}

2−|N(b)| · sign(x, b)sign(y, b)Γy

)
x∈Vt

(50)

has norm ‖ΛQ‖ut ≤ δ
4θn.

With respect to Q0, we have
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Lemma 41 ([8]). The random formula Φ satisfies condition Q0 w.h.p., for any density 0 < r = m/n ≤ 2k ln 2.

Let Φ be a k-CNF and let δ > 0. For a number δ > 0 and an index l > t we say that xl is (δ, t)-biased if the result
µxl(Φt,σ, ω) of the BP computation on Φt,σ differs from 1

2 by more than δ, i.e.,

|µxl(Φt,σ, ω)− 1/2| > δ.

Moreover, (Φ, σ) is (δ, t)-balanced if no more than δθn variables are (δ, t)-biased.

Theorem 42 ([8]). There is ρ0 > 0 such that for any k, r satisfying ρ0 · 2k/k ≤ r ≤ 2k ln 2 and n sufficiently
large the following is true. Suppose (Φ, σ) is (δt, t)-quasirandom for some 1 ≤ t ≤ T = (1 − ln(ρ)/(c2k))n.
Then (Φ, σ) is (δt, t)-balanced.

At the end of this section, we will verify that random formulas chosen from the distribution P ′k(n,m) are indeed
quasirandom.

Proposition 43. There exists a constant ρ0 > 0 such that for any k, r satisfying ρ0 · 2k/k ≤ r ≤ 2k ln 2 there is
ξ = ξ(k, r) > 0 so that for n large and δt, T as in Theorem 42 the following is true. Let (Φ, σ) be a pair chosen
from the planted model P ′k(n,m), given that σ = 1 is the all-true assignment. Then

P [(Φ, σ) is (δt, t)-quasirandom|Q0] ≥ 1− exp
[
−ρ21−kn

]
for any 1 ≤ t ≤ T .

Finally, Theorem 10 follows by combining Corollary 13, Theorem 42, and Proposition 43.

Proof of Proposition 43: Let Φ′ = Φ′k(n,m) be a random formula obtained by including each possible clause
with probability p = m/(2k

(
n
k

)
) independently.

Proposition 44 ([8, Appendix E]). There exists a constant ρ0 > 0 such that for any k, r satisfying ρ0 · 2k/k ≤
r ≤ 2k ln 2 for n large and δt, T as in (45) the following properties hold for a random formulaΦ′ with probability
at least 1− exp

[
−10

∑
s≤t δs

]
for any 1 ≤ t ≤ T , given that Φ′ satisfies Q0.

1. Q1 and Q3 are satisfied.
2. For any set Q of size |Q| ≤ δθn there are at most 10−5δθn variables x that satisfy either (47), (48), or∣∣∣∣∣∣

∑
b∈N≤1(x,Q)

sign(x, b)

2|N(b)|

∣∣∣∣∣∣ > δ

2000
. (51)

3. For any Q the operator ΛQ from (50) satisfies ‖ΛQ‖ut ≤ δ
4(n− t)/2

Let Φt be the formula obtain from Φ by substituting the value ‘true’ for x1, . . . , xt−1 and simplifying. Since
the δs form a geometric sequence, we have

Σt =
∑
s≤t

δs ∼
n

ck exp(cθk)
.

Observe that

θδn > 1015Σt

if ρ ≥ ρ0 is chosen sufficiently large.

Lemma 45. There exists a constant ρ0 > 0 such that for any k, r satisfying ρ0 · 2k/k ≤ r ≤ 2k ln 2 the following
is true for the random formula Φ′ with probability at least 1− exp(−ρ22−kn).

1. The total number of all-negative clauses is bounded by 21−km.
2. For each variable x ∈ Vt let Nx be the number of all-negative clauses in which x appears. Then the number

of variables x ∈ Vt with Nx > 20.01θk is bounded by δ2θn.
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Proof. The first assertion simply follows from Chernoff bounds. With respect to the second assertion, assume that
the first claim occurs, i.e., the total number of all-negative clauses is bounded by 21−km = 2ρn/k. Then for
each variable the average number of occurrences in such clauses is bounded by 2ρ. Therefore, the total number of
variables that occur more than 20.01θk times is bounded by 2ρ · 2−0.01θkn. By symmetry, the number of such vari-
ables that are amongst the last θn variables is (asymptotically) binomially distribution with mean 2ρ · 2−0.01θkθn.
Therefore, the second assertion follows from Chernoff bounds. ut

Proof (Proposition 43). Let (Φ, σ) be a random pair chosen from the distribution P ′k(n,m). We may assume
without loss of generality that σ is the all-true assignment. Thus, the formula Φ is obtained by including each
clause that does not consist of negative literals only with probability p = m/((2k − 1)

(
n
k

)
) independently. Now,

let Φ′ be the formula obtained by addition to Φ each of the
(
n
k

)
all-negative clauses independently with probability

p. Then Φ′ has distribution Φ′k(n,m · 2k

2k−1 ). Thus, with probability at least 1− exp[−10
∑
s≤t δs] the formula Φ′

has the properties 1.–3. from Proposition 44. Let us condition on this event.
Since Φ′ contains Φ as a sub-formula, the fact that Φ′ enjoys properties Q1 and Q3 implies that the same is true
of Φ. Furthermore, any variable x for which either (47) or (48) is true in Φ has the same property in Φ′ (because
the expressions on the left hand side are monotone with respect to the addition of clauses). With respect to the
expression in (49), we decompose the sum for the pair (Φ, σ) as

Sx(Φ, σ) = Sx(Φ′, σ)−Rx,

where Rx sums over all clauses that are in Φ′ but not in Φ. Due to Q1, we may assume that only clauses of length
at least 0.1θk occur in the sum Rx. Thus, letting Nx denote the number of clauses in Φ′ \ Φ containing x, we get
|Rx| ≤ 2−0.1θkNx. The second part of Lemma 45 implies that for all but δ2θn variables we have Nx ≤ 20.01θk.
Hence, Rx is tiny for all but δ2θn variables. This shows that Φ satisfies Q2.
With respect to Q4, let D be the difference of the two linear operators for Φ and Φ′. Only clauses of length at least
0.1θk and at most 10θk contribute to D. Hence, letting N denote the number of all-negative clauses, we have

‖D‖ut ≤ 2−0.1θk(10θk)2N.

Since N ≤ 21−km = 2ρn/k by Lemma 45, we thus get

‖D‖ut ≤ 200θn(θk)2−0.1θk.

Hence, the third part of Proposition 44 implies that Φ satisfies Q4. ut
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